Knockdown of pp32 Increases Histone Acetylation and Ameliorates Cognitive Deficits

نویسندگان

  • Qiong Feng
  • Gao-Shang Chai
  • Zhi-Hao Wang
  • Yu Hu
  • Dong-Sheng Sun
  • Xiao-Guang Li
  • Rong-Hong Ma
  • Yi-Rong Li
  • Dan Ke
  • Jian-Zhi Wang
  • Gong-Ping Liu
چکیده

Aging is a cause of cognitive decline in the elderly and the major risk factor for Alzheimer's disease, however, aging people are not all destined to develop into cognitive deficits, the molecular mechanisms underlying this difference in cognition of aging people are obscure. Epigenetic modifications, particularly histone acetylation in the nervous system, play a critical role in regulation of gene expression for learning and memory. An inhibitor of acetyltransferases (INHAT) is reported to suppress histone acetylation via a histone-masking mechanism, and pp32 is a key component of INHAT complex. In the present study, we divided ~18 m-old aged mice into the cognitive-normal and the cognitive-impaired group by Morris water maze, and found that pp32 level was significantly increased in the hippocampus of cognitive-impaired aged mice. The mRNA and protein levels of synaptic-associated proteins decreased with reduced dendrite complexity and histone acetylation. Knockdown of pp32 rescued cognitive decline in cognitive-impaired aged mice with restoration of synaptic-associated proteins, the increase of spine density and elevation of histone acetylation. Our study reveals a novel mechanism underlying the aging-associated cognitive disturbance, indicating that suppression of pp32 might represent a promising therapeutic approach for learning and memory impairments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

pp32, an INHAT component, is a transcription machinery recruiter for maximal induction of IFN-stimulated genes.

Type I interferon (IFN) plays a crucial role in establishing the cellular antiviral state by inducing transcription of IFN-stimulated genes (ISGs). Generally, histone acetyltransferases (HATs) are positive regulators of transcription, but histone deacetylase (HDAC) activity is essential for transcriptional induction of ISGs. pp32 is known to be a key component of the inhibitor of acetyltransfer...

متن کامل

PP32 and SET/TAF-Iβ proteins regulate the acetylation of newly synthesized histone H4

Newly synthesized histones H3 and H4 undergo a cascade of maturation steps to achieve proper folding and to establish post-translational modifications prior to chromatin deposition. Acetylation of H4 on lysines 5 and 12 by the HAT1 acetyltransferase is observed late in the histone maturation cascade. A key question is to understand how to establish and regulate the distinct timing of sequential...

متن کامل

CBP histone acetyltransferase activity regulates embryonic neural differentiation in the normal and Rubinstein-Taybi syndrome brain.

Increasing evidence indicates that epigenetic changes regulate cell genesis. Here, we ask about neural precursors, focusing on CREB binding protein (CBP), a histone acetyltransferase that, when haploinsufficient, causes Rubinstein-Taybi syndrome (RTS), a genetic disorder with cognitive dysfunction. We show that neonatal cbp(+/-) mice are behaviorally impaired, displaying perturbed vocalization ...

متن کامل

Pentyl-4-yn-VPA, a histone deacetylase inhibitor, ameliorates deficits in social behavior and cognition in a rodent model of autism spectrum disorders.

In utero exposure of rodents to valproic acid (VPA) has been proposed to induce an adult phenotype with behavioural characteristics reminiscent of those observed in autism spectrum disorder (ASD). Our previous studies have demonstrated the social cognition deficits observed in this model, a major core symptom of ASD, to be ameliorated following chronic administration of histone deacetylase (HDA...

متن کامل

P 110: Evaluating the Role of Histone Hyper Acetylation in Induction of Neuroinflammation

Microglia is the effector cell of the innate immune system in central nervous system (CNS). These cells mediate inflammatory responses in injuries. Besides external factors, microglial function is also controlled by internal factors, including epigenetic regulations. Mechanisms of epigenetic regulation mainly consist of DNA methylation, histone modifications and use of non-coding RNAs. Recent s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017